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Effective field theory dimensional regularization

Dirk Lehmann* and Gary Pre´zeau†
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A Lorentz-covariant regularization scheme for effective field theories with an arbitrary number of propagat-
ing heavy and light particles is given. This regularization scheme leaves the low-energy analytic structure of
Greens functions intact and preserves all the symmetries of the underlying Lagrangian. The power divergences
of regularized loop integrals are controlled by the low-energy kinematic variables. Simple diagrammatic rules
are derived for the regularization of arbitrary one-loop graphs and the generalization to higher loops is dis-
cussed.
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I. INTRODUCTION

Effective field theory~EFT! is a consistent framework fo
calculating Green’s functions below a certain scaleLEFT
when the fundamental theory is unsolvable. It is based on
principle that a physical amplitude can be calculated fr
the most general Lagrangian formulated with the relev
degrees of freedom and consistent with the symmetries o
fundamental theory. EFT then provides a systematic met
of organizing an expansion inp/LEFT wherep is a generic
kinematic variable much smaller thanLEFT. This expansion
requires a regularization scheme which preserves the po
counting in the small kinematic variables.

EFT has been applied successfully to the calculation
Green’s functions that involve strongly interacting partic
at low energies@1#. One example is chiral perturbatio
theory ~xPT! @2,3# where only quasi-Goldstone bosons
generic massm are present and all the kinematic variabl
are small relative toLx'1 GeV. Dimensional regularization
can be thought of as anatural regularization scheme forxPT
because dimensionally regularized loop integrals can o
yield terms that involve powers of the small kinematic va
ables such asm/Lx .1 Hence, dimensional regularization is
preferred regularization scheme because it allows the ass
ment of a chiral power to any Feynman graph through
naı̈ve dimensional analysis while preserving the symmet
of the problem.

In the presence of heavy particles with generic mas
denoted byM*LEFT naı̈ve dimensional analysis is no longe
valid because the loop integrals also yield terms of the fo
M /LEFT which spoil power counting@4#.

For a single heavy particle at low energies, the dep
dence onM can be removed from the propagators by e
panding the EFT Lagrangian in inverse powers of the he
mass as is done in heavy quark effective field theory
heavy baryon chiral perturbation theory@5#. The 1/M expan-

*Electronic address: dlehmann@jlab.org
†Electronic address: prezeau@jlab.org
‡Mailing address: Thomas Jefferson National Accelerator Faci
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1In contrast with cutoff regularization which introduces powers

the cutoff.
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sion yields loop integrals that satisfy low-energy pow
counting. However, the 1/M expansion does not always re
produce the correct low-energy analytic structure. An e
ample of this is the scalar form factor of the nucleon whe
the 1/M expansion fails to reproduce the anomalous thre
old @6#. Therefore, the 1/M expansion near the anomalou
threshold will fail to converge and an infinite number
terms must be re-summed. This re-summation restores m
fest Lorentz invariance. The retention of manifest Loren
invariance from the beginning avoids these problems.

A manifestly Lorentz-invariant regularization schem
which preserves the low-energy analytic structure with
spoiling power counting is desirable. In the presence o
single heavy particle such a regularization scheme, ca
infrared regularization, was devised for one-loop Feynm
graphs by Becher and Leutwyler@7#, building on work by
Ellis and Tang@8#. The underlying idea of infrared regula
ization is the separation of power-counting violating term
from the dimensionally regularized loop integrals, and th
absorption into the low-energy constants~LECs! of the EFT.
The power-counting violating terms are proportional to fra
tional powers ofM which involve noninteger values of th
dimensiond. For example, for the nucleon self-energy gra
of Fig. 1, the infrared regularization separates out terms
the form Md24/(d24). This separation is achieved by e
tending the integration domain of the Feynman parame
appearing in Green’s functions. Inspired by this work,
regularization of one-loop graphs with two propagati
heavy particles was recently developed in Ref.@9# and re-
ferred to there as EFT dimensional regularization~EFTDR!.

In this paper a consistent, Lorentz-invariant, natural re
larization scheme is presented which generalizes EFTDR
an arbitrary number of heavy and light particles and
higher loops. This regularization systematically separates
all terms involving fractional powers ofM implementing a
low-energy power counting scheme. To one-loop order, i
proven that the low-energy analytic structure of the Gree

,

f
FIG. 1. Contribution to the nucleon self-energy.
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functions is leftintact by this procedure such that the reg
larization is valid throughout the low-energy region. It
demonstrated in the Appendix that this general formali
reproduces the one and two heavy particle sectors as
derived in Refs.@7,9#.

In Sec. II the analytic properties of Feynman graphs
reviewed employing the Landau equations. It is shown t
the singularities of Feynman integrals can be classified
cording to subgraphs of the original graph. In Sec. III, t
regularization scheme is introduced. It is shown that the fr
tional powers ofM can be associated with subgraphs of t
original graph and can be systematically separated out
one loop, simple diagrammatic rules are given to achieve
separation. The application of the formalism to multi-lo
graphs is discussed. The results are summarized in Sec

II. ANALYTIC STRUCTURE OF FEYNMAN GRAPHS

Consider a Feynman graphG with I scalar internal lines
andL loops ind space-time dimensions,

I G5mL~42d!E )
l 51

L
ddkl

~2p!d )
i 51

I
i

qi
22mi

21 i e
, ~1!

wherem is the renormalization scale of dimensional regul
ization. The momentumqi

m of each internal linei is a linear
combination of the loop momentakl

m and the external mo
mentaPv

m . The Feynman graph thus depends on the part
massesmi and a minimal set of scalar combinationsPv
•Pv8 of the external momenta. In a general EFT, fermi
propagators and derivative couplings give rise to
momentum-dependent numerator in Eq.~1!. Since the ana-
lytic properties of a Feynman graph only depend on
structure of the denominator as will be shown belo
momentum-dependent numerators can be neglected fo
purpose of this paper. This simplification is not a limitatio
of the formalism as Feynman graphs involving momentu
dependent numerators can always be decomposed in
combination of integrals of the form given by Eq.~1!.

The propagators of Eq.~1! can be combined with Feyn
man integrals to yield

I G5 i IG~ I !mL~42d!E
2`

`

)
k51

I

@daku~ak!#

3E )
l 51

L
ddkl

~2p!d

d~12( j 51
I a j !

@( i 51
I a i~qi

22mi
2!1 i e# I , ~2!

where theu functions have been introduced for later conv
nience. In general, singularities ofI G will arise when the
contour of integration gets pinched between two or m
poles of the integrand~pinch singularities! or between poles
of the integrand and endpoints of the integration cont
~endpoint singularities!. In either case, the integration con
tour cannot be distorted away from the pole of the integra
resulting in a singularity of the integral itself.
01600
rst

e
t

c-

c-

o
is

V.

-

le

a

e
,
he

-
a

-

e

r

d

A useful tool for investigating analytic properties of Fey
man graphs is given by the set of Landau equations.2 They
constitute a necessary but not sufficient condition for
occurrence of singularities inI G and their solution deter-
mines the locations of the singularities in the space of mas
and external momenta as well as their locations in the sp
of integration variablesa i . In the representation~2! of the
Feynman graph, the Landau equations forI G are given by

for each i : either a i50 or qi
25mi

2, ~3!

for each l ,m: (
i 51

I

a i

]qi
2

]kl
m 50, ~4!

where thea i ’s must be normalized to satisfy thed-function
constraint,

(
i 51

I

a i51. ~5!

An immediate consequence of Eq.~3! is the vanishing of the
denominator in Eq.~2!, ( i 51

I a i(qi
22mi

2)50. Equation~3!
means that an internal particlei of the Feynman graphG is
either on shell or the Feynman parametera i of line i is zero.
If a i50, line i does not contribute to the remaining Land
equations~4!. In this case, the set of Landau equatio
for G is identical to the Landau equations for the su
graphg of G that is obtained by contracting linei to a point.3

A solution to the Landau equations where all thea j ’s are
non-zero, i.e., all internal lines are on shell, is called t
leading singularityof G; singularities withn internal lines
off shell are called (sub)n-leading singularities. It follows
that every (sub)n-leading singularity of a Feynman graphG
can be represented by the leading singularity of a subgrag
where the correspondingn internal lines of the original graph
have been contracted. The complete set of singularities
Feynman graphG is then given by the leading singularitie
of each of its subgraphs.

For one-loop graphs, a more practical formulation of t
Landau equations can be derived. Routing all internal m
mentaqi

m to flow around the loop, Eq.~4! takes on the form

for each i with a iÞ0: (
j 51

I

a jqj
m50, ~6!

where only uncontracted linesj contribute. Multiplying this
equation byqim for each uncontracted linei yields a set of
linear equations

(
j 51

I

~qi•qj !a j50. ~7!

2See Refs.@10,11# for a review.
3It is important to emphasize that the subgraphs thus obtained

not Feynman graphs and do not represent physical amplitu
Henceforth, these subgraphs will be represented by lower-case
ters.
1-2
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EFFECTIVE FIELD THEORY DIMENSIONAL REGULARIZATION PHYSICAL REVIEW D65 016001
Using the on-shell condition~3!, the matrix (qi•qj ) can be
rewritten as

V i j 5~qi•qj !5
mi

21mj
22~qi2qj !

2

2
, ~8!

which is now independent of the loop momentumkm. The
location of the singularity in the space of masses and ex
nal momenta is determined from the condition

detV i j 50, ~9!

while the corresponding location in Feynman parame
space is obtained by solving the zero-eigenvalue problem~7!
and normalizing thea i ’s according to Eq.~5!. A singularity
does not arise on the physical sheet when the solution
parameter space lies outside the domain of integration of
Feynman graph.

A. An example: The triangle graph

As an illustration consider the triangle graph shown
Fig. 2~a! where the solid lines represent heavy particles
massM and the dashed line represents a light particle
massm. The corresponding subgraphs are shown in F
2~b!–2~g!.

For the triangle graph, thed function appearing in Eq.~2!
constrains the domain of integration to a plane in
(a1 ,a2 ,a3) space. Figure 3 shows the integration dom
and the locations of the singularities in this plane. The in
gration domain~light shaded area! is bounded by the lines
a i50. A (sub)1-leading singularity corresponding to the su
graph where linei is contracted lies on the linea i50 A
(sub)2-leading singularity represented by the subgrap
where linesi and j are contracted lies at the intersection
the linesa i50 anda j50 which is a corner of the integra
tion domain. Finally, the Feynman parameters that co
spond to the leading singularity form a surface given by

FIG. 2. Triangle graph~a! and all its subgraphs~b!–~g!.
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dark shaded area in Fig. 3 which penetrates the integra
boundaries at the location of the (sub)1-leading singularities.
In Feynman parameter space, the leading singularity i
pinch singularity while all the sub-leading singularities o
curring on the physical sheet lie on the integration bound
and are therefore endpoint singularities.

It is instructive to solve the Landau equations for ea
subgraph.

(Sub)2-leading singularities. For the heavy-particle tad
pole subgraph Fig. 2~e! with lines 2 and 3 contracted, Eqs
~7! and ~8! yield immediately

a1Þ0, a25a350,

a1M250⇒M250. ~10!

Similarly, the light-particle tadpole Fig. 2~g! yields a singu-
larity at m250. In Fig. 3, the heavy-particle tadpole sing
larities are denoted bŷ , the light-particle tadpole byj.

(Sub)1-leading singularities. For the self-energy subgrap
in Fig. 2~b! condition ~9! reads

a150, a2Þ0, a3Þ0,

U M2 M21m22P2
2

2

M21m22P2
2

2
m2 U

5@P2
22~M1m!2#@P2

22~M2m!2#50.
~11!

The corresponding zero eigenvectors are easily determi
The singularities are located at

P2
25~M1m!2 for a25

m

M1m
, a35

M

M1m
, ~12!

FIG. 3. Integration domain and location of singularities of t
triangle graph.
1-3
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P2
25~M2m!2 for a252

m

M2m
, a35

M

M2m
.

~13!

Solution ~12! ~denoted byd in Fig. 3! is recognized as the
physical heavy-light threshold, while the pseudo-thresh
~13! ~denoted bys! does not appear as a singularity on t
physical sheet since it lies outside (a2,0) the domain of
integration of the Feynman graph~2!. Similarly, the thresh-
olds for the bubble subgraph in Fig. 2~d! are

P254M2 for a15a25 1
2 , a350 ~3 in Fig. 3!,

~14!

P250 not on the physical sheet.4 ~15!

Leading singularity. The leading singularity of the tri-
angle graph, corresponding toa iÞ0 (i 51,2,3), is a mani-
fold rather than a point in the space of independent exte
momentaP1

2, P2
2, andP25(P11P2)2 and satisfies

U M2 2M22P2

2

M21m22P1
2

2

2M22P2

2
M2 M21m22P2

2

2

M21m22P1
2

2

M21m22P2
2

2
m2

U50.

~16!

To this manifold in momentum space corresponds a mani
in Feynman parameter space given by the dark shaded
in Fig. 3.

III. EFT DIMENSIONAL REGULARIZATION

In this section a natural regularization scheme~EFTDR!
for an EFT applicable below a scaleLEFT is established. It is
the low-energy kinematic variables that control the div
gences of the loop integrals regularized using EFTDR. T
low-energy domain is defined by the relations

uPv•Pv82M2u!LEFT
2 ,

Pv•pv8 , pv•pv8 , m2!LEFT
2 ,

M*LEFT, ~17!

where Pv
m and pv

m are the heavy and light particle extern
momenta, respectively, whileM andm are generic heavy an
light particle masses, respectively.

EFTDR is implemented by consistently separating a lo
integral I G corresponding to a graphG into two parts,

I G5 Ī G1RG , ~18!

4The normalization condition~5! cannot be fulfilled.
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where the entire low-energy analytic structure ofI G is col-
lected intoĪ G while all the terms multiplied by factors of th
form Mld2n ~referred to as fractional powers ofM for frac-
tional space-time dimensiond! where l and n are integers,
are collected intoRG , the regular part.5 The analytic struc-
ture of Ī G and I G are identical in the low-energy domain
such thatRG can be accounted for through a renormalizati
of the low-energy constants of the EFT. The separation~18!
will be achieved by systematically separating out the s
graphs representing singularities that lie outside of the lo
energy region; these subgraphs will be referred to asregular
subgraphs.

In the example of the triangle graph, the only singularit
that lie outside of the low-energy region are theM50 sin-
gularities represented by Figs. 2~e! and 2~f!. Since a factor
Mld2n will be singular atM50 for appropriated, separating
out the M50 singularity will ensure that the terms mult
plied by fractional powers ofM are separated out.

Generally, subgraphs containing only heavy parti
propagators and low-energy momentum insertions are re
lar subgraphs that give rise to fractional powers ofM. In-
deed, the Landau equations~7! for the regular subgraph
shown in Fig. 4 are

M2F12(
j 51

I
1

2M2 ~qi2qj !
2a j G'M250. ~19!

Therefore, these subgraphs cannot have singularities in
low-energy region and belong inRG .

The subgraphs that lead to fractional powers ofM can be
isolated by extending the Feynman parameter domain of
tegration in Eq.~2! where theu(ak) define the integral
boundaries. The product ofu’s can be rewritten

dS 12 (
k51

I

akD)
i 51

I

@12u~2a i !#

5dS 12 (
k51

I

akD H 11(
i 51

I

@2u~2a i !#

1 (
i , j 51
i , j

I

@2u~2a i !#@2u~2a j !#1¯J . ~20!

5The terminology is taken from Ref.@7# and refers to the fact tha
to one loop, RG is analytic in the low-energy region.

FIG. 4. A regular subgraph composed of heavy particle pro
gators and low-energy momentum insertions represented by wi
lines.
1-4
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EFFECTIVE FIELD THEORY DIMENSIONAL REGULARIZATION PHYSICAL REVIEW D65 016001
It is noted that eachu(2a i) contains the pointa i50 which,
as discussed in the previous section, represents a contr
line in G that leads to a subgraph ofG. In light of this, each
term in Eq.~20! defines a domain of integrationDg ,

Dg5dS 12 (
k51

I

akD)
i ¹g

@2u~2a i !#, ~21!

which can be associated with a particular subgraphg of G.6

RG is then defined as

RG5 i IG~ I !mL~42d!E
2`

`

)
k51

I

dakDRG

3E )
l 51

L
ddkl

~2p!d F(
i 51

I

a i~qi
22mi

2!1 i eG2I

, ~22!

where

DRG
5 (

regularg’ s
Dg . ~23!

It is instructive to discuss the triangle graphI 3 as an illustra-
tion of the method. Table I shows the association of e
term in theu expansion with the corresponding subgraph a
domain of integration. As mentioned above, the only regu
subgraphs are the heavy particle tadpoles located
(a1 ,a2 ,a3)5(1,0,0) and~0, 1, 0! in Fig. 3. The integration
domains in Eq.~20! that contain these points as endpoints
u(2a2)u(2a3) and u(2a1)u(2a3). These integration
domains do not include any of the low-energy singulariti
this implies thatR3 is analytic in the low-energy domain.Ī 3
is then given by

Ī 35I 32R3 , ~24!

and possesses the same low-energy analytic structure in
small kinematical variables asI 3 but does not contain an
fractional powers ofM. This is evident by looking at the
integration domains corresponding to Eq.~24! and drawn in
Fig. 5.

For a general Feynman graphG, a particular domain of
integrationDg associated with a subgraphg will never select
a singularity associated with any subgraph ofg. Indeed, the
domain of integrationDg will never have as anendpointthe
location ina space of any singularity associated with a su
graph ofg. It follows that a subgraphḡ that contributes toĪ G
can never give rise to fractional powers ofM since they can
only arise from regular subgraphs that are subgraphs oḡ.
This proves thatRG contains all the fractional powers ofM.
To one loop, it is also straightforward to show thatRG is
analytic in the low-energy region.

6The subscriptg represents a set of indices labeling the inter
lines of the subgraphg.
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A. One-loop graphs

For one-loop graphs, more explicit results can be o
tained. Evidently, any subgraph of a regular subgraph,
tained by contracting out further lines, is also regular. T
gives rise to the notion of aminimally contracted regular
~MCR! subgraph, i.e., a regular subgraphg that is not a
subgraph of any other regular subgraph with more lines t
g. In EFTs to one-loop order, there are at most two differ
MCR subgraphs of a given graph and every internal hea
particle line belongs to exactly one of them~cf. Appendix A!.
As an example, the two tadpoles of Figs. 2~e! and 2~f! are the
MCR subgraphs of the triangle graph.

Since by construction different MCR subgraphs do n
have common lines, they cannot have subgraphs in comm
Any regular subgraphg is thus a subgraph of exactly on
MCR subgraphg. The domain functions~21! of a MCR sub-
graphg and all its subgraphsg,g can be re-summed to yield

(
g#g

Dg5dS 12 (
k51

I

akD H 12(
i Pg

u~2a i !1¯J
3)

j ¹g
@2u~2a j !# ~25!

5dS 12 (
k51

I

akD)
i Pg

u~a i !)
j ¹g

@2u~2a j !#.

~26!

The domain functionDRG
introduced in Eq.~23! is then

DRG
5(

g
(
n#g

Dg , ~27!

and the full regular part is given as

RG5 i IG~ I !m42d(
g
E

0

`

)
i Pg

da iE
2`

0

)
j ¹g

~2da j !

3dS 12 (
k51

I

akD 3E ddk

~2p!d F(
i 51

I

a i~qi
22mi

2!1 i eG2I

.

~28!

The momentum integration can be carried out explicitly@11#
yielding

RG5k I(
g
E

0

`

)
j ¹g

da iE
2`

0

)
j ¹g

~2da j !dS 12 (
k51

I

akD
3@C2 i e#d/221, ~29!

where

C5 (
i , j 51

I

a iV i j a j , V i j 5
mi

21mj
22~qi2qj !

2

2
. ~30!

The matrixV i j was defined in Eq.~8! and the factors have
been collected in

l

1-5
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TABLE I. Integration domains for the triangle graph.
t

le
k I5~2 ! I
i I 11

16p2

G~ I 2d/2!

~4pm2!d/222 . ~31!

A useful representation ofRG with a single noncompac
integral can be derived by inserting the identity

15E
1

`

dldS l2(
kPg

akD ~32!
01600
FIG. 5. Decomposition of the integration contour for the triang
graph.
1-6
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EFFECTIVE FIELD THEORY DIMENSIONAL REGULARIZATION PHYSICAL REVIEW D65 016001
into Eq. ~29! and performing the change of variables

2a i5lzi , i Pg,

a i5~12l!zi , i ¹g. ~33!

This yields, forRG ,

RG52k I(
g
E

1

`

dll ugu21~12l! I 2ugu21E
0

1S)
i Pg

dzi D
3dS 12(

kPg
zkD E

0

1S )
j ¹g

dzj D dS 12(
k¹g

zkD
3F ~12l!2 (

i , j ¹g
ziV i j zj1l2 (

i , j Pg
ziV i j zj

12l~12l!(
i Pg
j ¹g

ziV i j zj2 i eG d/22I

, ~34!

where ugu denotes the number of internal lines belonging
the MCR subgraphg.

In this representation, it is straightforward to prove th
RG is analytic in the low-energy region. As stated abo
every internal heavy-particle line belongs to one of the t
MCR subgraphsg1 or g2 .7 Denoting the set of internal light
particle lines byU, the elements of the matrix appearing
Eq. ~30! are @cf. Eq. ~A2! in Appendix A#

V i j 55
O~p2!, i , j PU,

O~p!M , i PU, j ¹U,

M21O~p2!, i , j Pg1 or i , j Pg2 ,

2M21O~p!M , i Pg1 , j Pg2 ,

~35!

yielding for the denominator of Eq.~34! with g5g1 :

(
i , j 51

I

a iV i j a j5~12l!2 (
i , j Pg2

ziM
2zj22l~12l!

3 (
i Pg1
j Pg2

ziM
2zj1l2 (

i , j Pg1

ziM
2zj1O~p!M

5M2~11n!2l2F12
n

~11n!lG2

1O~p!M ,

~36!

where n5S i Pg2
zi with 0<n<1 and l>1. Thus, the de-

nominator never vanishes proving thatRG is always analytic
for one-loop graphs with arbitrary numbers of heavy a
light particle propagators. The integral overl can be per-
formed by expanding the square bracket in Eq.~36!. To lead-
ing order in this expansion, this gives

7Hereg2 is understood to be empty in cases where there is o
one MCR subgraph.
01600
t
,
o

d

RG.(
g

~21! I 2ugu21Md22Ik I

~d2I 21!G~ ugu! E
0

1S)
i ¹g

dzi D
3dS 12(

k¹g
zkD ~11n!d22I1MO~p!, ~37!

where thel-integral was performed atd sufficiently small to
drop the upper boundary;d can now be analytically contin
ued to 4 space-time dimensions. Equation~37! can be used to
calculate to leading order the regular part ofR3 keeping in
mind that there are two MCR subgraphs for the trian
graph:

R352
1

16p2

g~32d/2!

~4pm2!d/222

Md26

~d24!~d25!
~11¯ !.

~38!

Equation~38! agrees with the result given in Ref.@9#.
Equation~37! explicitly shows thatRG is proportional to a

fractional power ofM. This implies thatRG and Ī G transform
separately under the symmetry transformations that leave
Lagrangian invariant@7,12#. This ensures that EFTDR pre
serves all the symmetries of the underlying Lagrangian.
general one-loop graphs, Eq.~37! also shows that the non
compact integrals appearing inĪ G can be performed quite
generally.

The Taylor series expansion ofRG in powers ofp is trun-
cated at the order of the EFT Lagrangian. It follows that t
Taylor polynomial of RG can be absorbed into the low
energy constants of the EFT Lagrangian. OnceRG has been
used to define the domain of integration ofĪ G , it need not be
considered further.

For a general one-loop Feynman graphG, the EFT dimen-
sional regularization scheme is summarized by the follow
simple rules:

~1! Label all the internal linesi of the graphG by the
corresponding Feynman parametera i .

~2! Determine the minimally contracted regular su
graph~s! g of G.

~3! For each minimally contracted regular subgraphg,
integrate the Feynman parameters corresponding to inte
lines of g from 0 to 1`; integrate the remaining Feynma
parameters from2` to 0 inserting a factor of21 for every
integral.

~4! Sum these contributions for all minimally contracte
subgraphs to obtain the regular partRG .

~5! The EFT dimensionally regularized Feynman integ
is given as

Ī G5I G2RG .

B. Discussion of multi-loop graphs

It is emphasized that the regularization scheme develo
above is not limited to one-loop graphs. Indeed, the Lan
equations are valid to an arbitrary number of loops and al
a determination of those subgraphs that give rise to fractio
powers ofM. The contributions from these and only the

ly
1-7



m

a
p

gy
o

ap
si
ri
e
ed
ti

he
o

-
nd
cl

ec

rb
n
r

ve
i-

an
an

nt
le
fe

ly

s of
of
nd
re-
he
the
ur-
m-
tion
her

on
ed.

ure

lar
e

ns
aphs

-
pa-
le

ion

-

g-
aph

ng-
by
he
d it
bu-
ing
m-

wo-
uce

rt
ript.
al

ce

ugh

op
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subgraphs are collected inRG and need to be separated fro
the dimensionally regularized Feynman integralI G to obtain
the EFT dimensionally regularized integralĪ G . The separa-
tion

I G5 Ī G1RG ~39!

is again achieved by extending the domain of integration
explained above. As a novel feature at two or more loo
subgraphs that give rise to fractional powers ofM may now
contain light internal lines and may give rise to low-ener
singularities. An example of such a subgraph is a tadp
attached to a triangle graph as shown in Fig. 6~a!: the tadpole
part of the graph gives rise to fractional powers ofM, while
the triangle part contains low-energy singularities. The
pearance of these graphs does not constitute a problem
their low-energy singularities are not new types of singula
ties but rather originate from a lower number of loops. Ev
after separating outRG , all the thresholds and the associat
analytic structure of these low-energy singularities are s
contained in the low-energy partĪ G through subgraphs with
fewer loops. In the two-loop example shown in Fig. 6, t
low-energy singularities are identical to those of the one-lo
triangle graph which are retained inĪ G according to the regu
larization scheme and the contribution of Fig. 6 correspo
to the triangle graph with a renormalized four heavy-parti
vertex shown in Fig. 6~b!.

The calculation of multi-loop Feynman graphs is a subj
that has attracted much attention in the last decade.8 For a
perturbative expansion such as heavy baryon chiral pertu
tion theory, the calculation of multi-loop graphs is importa
as an estimate of the convergence of a perturbation se
@5,14#. As a result, a number of techniques have been de
oped for the calculation of multi-loop graphs in various k
nematical regimes with respect to external momenta
masses@15–19# and applied to various classes of Feynm
graphs such as ‘‘watermelon’’ diagrams@13,20#. In contrast
to EFTDR, these techniques rely on expansions of the i
grand around various thresholds which are typically imp
mented in a particular reference frame such that mani
Lorentz invariance is lost@16#. Although this is not a prob-
lem in principle, the implementation of EFTDR does not re

8See Ref.@13# and references therein.

FIG. 6. Figure~a! shows an example of an unnested two-lo
graph that gives rise to fractional powers ofM while containing
low-energy singularities. Figure~b! shows the triangle graph with
renormalized four heavy-particle vertex.
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on a particular reference frame nor on various expansion
the integrand. It is also relatively easy to see the effect
EFTDR on the analytic structure of a Feynman graph a
how the Ward identities relating different amplitudes are p
served. It is worth noting that for the multi-loop case, t
Feynman parameter integrals in EFTDR are simplified by
fact that a number of them are extended to infinity. The p
pose of the current paper is to illustrate EFTDR in the si
pler context of one-loop Feynman graphs and the applica
of the technique to multi-loop graphs is a subject for anot
paper.

IV. SUMMARY

In summary, a manifestly Lorentz-invariant regularizati
scheme which does not violate power counting was deriv
This scheme separates a Feynman integralI G represented by

a Feynman graphG into two parts,I G5 Ī G1RG , and is re-
ferred to as EFTDR the entire low-energy analytic struct

of I G is collected intoĪ G while all the low-energy power
counting violating contributions are collected into the regu
part RG . This separation is achieved by identifying th
power counting violating contributions to particular solutio
of the Landau equations which are represented by subgr
of G. In EFTDR, each subgraphg of G is associated with a
domain of integrationDg in the space of Feynman param
eters such that the power counting violating terms are se
rated out by extending the domain of integration. Simp
diagrammatic rules were given which allow the construct

of Ī G ~andRG! for one-loop diagrams with an arbitrary num
ber of heavy propagating particles.RG can be accounted
through a renormalization of the LECs of the EFT Lagran
ian and discarded; the EFTDR regularized Feynman gr

I G is then Ī G . It was shown thatRG and Ī G transform sepa-
rately under the transformations that leave the EFT Lagra
ian invariant such that all the Ward identities are satisfied
the EFTDR regularized Green’s functions of the EFT. T
application of EFTDR to higher loops was discussed an
was emphasized that the power counting violating contri
tions can still be separated out systematically by extend
the domain of integration in the space of Feynman para
eters. EFTDR was applied to the one-heavy particle and t
heavy particle sectors to one loop and shown to reprod
the results in Refs.@7,9#.
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APPENDIX A: MINIMALLY CONTRACTED REGULAR
SUBGRAPHS

Consider a general one-loop graphG formed with heavy
~massM! and light~massm! particles and external momen
Pv

m . By cutting two different linesi and j the graph is di-
vided into two connected partsG1

@ i j # and G2
@ i j # , see Fig. 7.

Four-momentum conservation at each vertex ofG implies
that the squared momentum flowing through the cut,qi
2qj )

2, equals the squared total external momentum attac
to either one of the two pieces,

~qi2qj !
25S (

v
~6 !PvD

G
1
@ i j #

2

5S 2(
v8

~6 !Pv8D
G

2
@ i j #

2

,

~A1!

where the momentaqi
m of internal lines are routed to flow

around the loop and the sign of the external momentaPv
m

depends on whether the momenta are incoming or outgo
Since in an EFT all external three-momenta areO(p2)
!LEFT and creation/annihilation of heavy particles is e
cluded, it follows immediately that9

~qi2qj !
255

O~p2!, i , j light ~A2a!

M21O~p!M , i light, j heavy ~A2b!

~2M !21O~p!M , i , j heavy ~A2c!

O~p2!, i , j heavy. ~A2d!

An example for the case~A2c! is found when cutting the two
heavy-particle lines of the box graph Fig. 8~a!, while the
crossed box graph Fig. 8~b! corresponds to case~A2d!.

The crucial observation is now that for any three hea
particle internal linesi, j , andk

~qi2qj !
25O~p2!

~qj2qk!
25O~p2!J ⇒~qi2qk!

25O~p2!. ~A3!

This transitivity relation follows from Eq.~A1! and

9It is to be noted that Eq.~A2! remains true for all subgraphs ofG.
Indeed, the left-hand side is unaffected by the contraction lines
point.

FIG. 7. Cutting a one-loop graph.
01600
ed

g.

-

S 2(
v

~6 !PvD
G

2
@ ik#

5S (
v

~6 !PvD
G

2
@ i j #

1S (
v

~6 !PvD
G

2
@ jk#

, ~A4!

see Fig. 9. Any two heavy-particle linesi and j of a graphG
are said to belong to the sameminimally contracted regular
~MCR! subgraphg if and only if they satisfy condition Eq.
~A2d!,

i , j Pg :⇔~qi2qj !
25O~p2!. ~A5!

This defines the MCR subgraphs ofG completely. In light of
Eq. ~A3!, different MCR subgraphs cannot have any intern
lines in common. On the other hand, every heavy-part
internal line belongs at least to one regular subgraph, nam
the tadpole graph corresponding to that line. Therefore,
set of heavy-particle internal lines of a graphG can be split
into disjoint subsets; each subset is diagrammatically re
sented by a subgraphg of G that consists of all the lines
belonging to the subset and of no other lines. These s
graphs are the MCR subgraphs. They do not have lo
energy singularities, since by construction all~effective! ex-
ternal momenta are small while all internal lines are hea

In the box graph Fig. 8~a! the two heavy-particle lines 1
and 2 donot belong to the same MCR subgraph; in this ca
the tadpole graphs formed with lines 1 and 2 are both M
subgraphs. In the cross box graph Fig. 8~b!, however, there is
only one MCR subgraph, namely the bubble graph form
with lines 1 and 2.

It is noted that at most two different MCR subgraphs o
given one-loop graph exist. This can be seen as follo
assume the existence of more than two different MCR s

a

FIG. 8. Box graph~a! and cross box graph~b!.

FIG. 9. Transitivity of cuts.
1-9
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graphs and choose three heavy-particle internal linesi, j , and
k belonging to different MCR subgraphs. It is easily verifi
that
~qi2qj !

254M21O~p!M
~qj2qk!

254M21O~p!M J ⇒~qi2qk!
2Þ4M21O~p!M .

~A6!

However, since (qi2qk)
2 must satisfy Eq.~A2!, lines i andk

have to belong to the same MCR subgraph,

~qi2qk!
25O~p2!, ~A7!

in contradiction to the above assumption.

APPENDIX B: ONE-LOOP EXAMPLES

This formalism reproduces the prescriptions given for
one-loop graphs in Figs. 10~a! and 11~a! first derived in Refs.
@7,9#. Figure 10~a! is the most general one-loop graph with
single heavy particle line running through it; there areH
21 soft momentum insertions entering the heavy part
internal line andl 21 soft momentum insertions entering th
light particle internal line.

The regular part for the graph in Fig. 10~a! corresponds to
the MCR subgraph in Fig. 10~b! where all the light internal
lines have been contracted. Equation~34! gives

R52k IE
1

`

dllH21~12l! l 21E
0

1S )
i 51

l

dzi D
3S )

j 51

H

dwj D dS 12 (
k51

l

zkD dS 12 (
k51

H

wkD
3@C2 i e#d/22I , ~B1!

which is the result first obtained by Becher and Leutwy
@7# for a one-loop graph withl light particle propagators
labeled 1,...,l and H heavy particle propagators labeledl
11,...,I whereI 5 l 1H. Indeed, Eq.~B1! describes a Feyn

FIG. 10. ~a! General one-loop graph with one heavy particle.~b!
The corresponding minimally contracted regular subgraph.

FIG. 11. ~a! Generalized box graph.~b! Generalized cross box
graph.
01600
e

e

r

man parametrization where all the light particle propagat
were combined into a single denominator, all the heavy p
ticle propagators were combined into another denomina
and these two denominators were subsequently comb
with the Feynman parameterl integrated between one an
infinity; this is precisely the regular part in Beche
Leutwyler’s infrared regularization.

For a Feynman graph with two heavy particle lines ru
ning through it, Figs. 11~a! and 11~b! are the most genera
diagrams that can be drawn.10 For the Feynman graph show
in Fig. 11~a!, there are two MCR subgraphs obtained
contracting all the light particle internal lines as well as o
of the heavy internal line running through the graph. T
regular part is given by the sum of the MCR subgrap
Assumingl light particle internal lines and that the top hea
particle internal line is segmented byh121 soft momentum
insertions while the bottom heavy particle internal line
segmented byh221 soft momentum insertions, a change
variables similar to Eq.~33! can be performed on Eq.~34! to
cast it in the form in which it appears in Ref.@9#. For the
MCR obtained by contracting thehn (n51,2) propagators of
one of the heavy lines, inserting the integrals

15E
1

`

dldbdS l2 (
k5 l 11

I

akD dS b2
1

l (
k5 l 1hn11

I

akD
~B2!

and performing the change of variables

a i5~12l!zi , i 51, . . . ,l

a i 1 l5l~12b!xi , i 51, . . . ,hn ~B3!

a i 1 l 1hn
5lbyi , i 51, . . . ,H2hn

gives

R5 (
n51,2

2k IE
1

`

dlE
1

`

dblH21~12l! l 21bH2hn21

3~12b!hn21E
0

1S )
i 51

hn

dxi D S )
j 51

H2hn

dyj D S )
k51

l

dzkD
3dS 12 (

a51

l

zaD dS 12 (
b51

H2hn

ybD dS 12 (
c51

hn

xcD
3@C2 i e#d/22I , ~B4!

whereH5h11h2 . This is just the regular part given in@9#.
The generalized cross box graph in Fig. 11~b! does not have
a two-heavy particle threshold, and its regular part is c
structed from a single MCR subgraph obtained by contra
ing all the light internal lines.

10For example, the triangle graph is obtained from Fig. 11~a! by
removing one of the light particle internal lines that runs throu
the graph.
1-10



. E

B

g-
,

.

EFFECTIVE FIELD THEORY DIMENSIONAL REGULARIZATION PHYSICAL REVIEW D65 016001
@1# S. Weinberg,The Quantum Theory of Fields II~Cambridge
University Press, Cambridge, England, 1996!: J. F. Donoghue,
E. Golowich, and B. R. Holstein,Dynamics of the Standard
Model ~Cambridge University Press, Cambridge, 1996!.

@2# S. Weinberg, Physica A96, 327 ~1979!.
@3# J. Gasser and H. Leutwyler, Ann. Phys.~N.Y.! 158, 142

~1984!; Nucl. Phys.B250, 465 ~1985!.
@4# J. Gasser, M. Sainio, and A. Sˇvarc, Nucl. Phys.B307, 779

~1988!.
@5# E. Eichten and B. Hill, Phys. Lett. B234, 511 ~1990!; H.

Georgi,ibid. 240, 447~1990!; B. Grinstein, Nucl. Phys.B339,
253 ~1990!; E. Jenkins and A. M. Manohar, Phys. Lett. B255,
558 ~1991!.

@6# V. Bernard, N. Kaiser, and U.-G. Meißner, Int. J. Mod. Phys
4, 193 ~1995!.

@7# T. Becher and H. Leutwyler, Eur. Phys. J. C9, 643 ~1999!.
@8# P. J. Ellis and H.-B. Tang, Phys. Rev. C57, 3356~1998!.
@9# J. L. Goity, D. Lehmann, G. Pre´zeau, and J. Saez, Phys. Lett.
01600
504, 21 ~2001!.
@10# R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polkin

horne, The Analytic S-matrix~Cambridge University Press
Cambridge, 1966!.

@11# C. Itzykson and J.-B. Zuber,Quantum Field Theory~McGraw-
Hill, New York, 1980!.

@12# H. Leutwyler, Ann. Phys.~N.Y.! 235, 165 ~1994!.
@13# S. Groote and A. A. Pivovarov, Nucl. Phys.B580, 459~2000!.
@14# J. A. McGovern and M. C. Birse, Phys. Lett. B446, 300

~1999!.
@15# V. A. Smirnov, Phys. Lett. B394, 205 ~1997!.
@16# M. Beneke and V. A. Smirnov, Nucl. Phys.B522, 321 ~1998!.
@17# S. Groote, J. G. Ko¨rner, and A. A. Pivovarov, Nucl. Phys

B542, 515 ~1999!.
@18# F. V. Tkachov, Phys. Lett. B412, 350 ~1997!.
@19# F. V. Tkachov, Int. J. Mod. Phys. A14, 683 ~1999!.
@20# A. I. Davydychev and V. A. Smirnov, Nucl. Phys.B554, 391

~1999!.
1-11


